
UNCLASSIFIED

407 957
AD _ _ _ _

DEFENSE DOCUMENTATION CENTER
FOR

SC]ENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



R-940O

DAVIDSON
LABORATORY

r7c
Report 9 ~JUN 13 1b

TIS1A A

THRlEE-DIMENSIONAL APPROACH
STEVNS NSTIUTETO THE GUST PROBLEM
OF TCHNOOGYFOR A SCREW PROPELLER

by

J. Shioiri and S., Tsakorias

March 1963

0



I

DAVIDSON LABORATORY
REPORT 94O

I
March 1963

THREE-DIMENSIONAL APPROACH TO THEI GUST PROBLEM FOR A SCREW PROPELLER

by

J. Shioiri and S. Tsakonas

Contract Nonr 263(38) and Nobs 68349
Bureau of Ships Fundamental

Hydromechanics Research Program
S-R 009 01 01

Administered by David Taylor Model Basin

Reproduction in whole or in part is permitted
for any purpose of the United States Government

Approved

John P. Breslin
Director1

1



ABSTRACT

The unsteady lifting surface approach is utilized

for the marine propeller case and the corresponding surface

integral equation is solved for the Weissinger mathematical
model. The applicability of the Weissinger method to the

nonstationary flow case is studied; The kernel function is

expressed in closed forms after some mathematical simplifica-

IItion. From numerical calculations of propeller loading

which are restricted to a four-bladed propeller of sector
type blade form with different blade-area ratios and various

pitch-diameter ratios,. conclusions are drawn as to three-

dimensional effects as well as to the dependence of propeller

loading on the important parameters, as the blade-area and

pitch-diameter ratios,

I
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INTRODUCTI ON

The ship hull induces a disturbance flow upon the

f propeller plane. Although, in general, this flow is time-

independent, its distribution on the propeller plane is non-

uniform, and hence the rotating blades, which cut through

this disturbance, experience time-dependent gust. If this

disturbance flow is expanded into angular harmonics, each

component exerts a sinusoidal gust upon the blades. Using

Sears' two-dimensional response function for the sinusoidal

gust' in a stripwise manner, Breslin et a12 evaluated the

oscillatory thrust and torque of the propeller due to this

kind of disturbance. However, correlation with existing

experimental results was very poor, 3 and they attributed this

to application of the two-dimensional method to a typically

three-dimensional problem.

At this stage, it seems important to try a three-

dimensional approach. The three-dimensional lifting surface

integral equation for the screw propeller in a steady flowI4was derived by Sparenberg.4 A slight modification gives the

equation for the non-steady state. The nature of this equa-

tion was examined by Hanaoka.5

Owing to the complicated form of the kernel, how-

I ever, it seems difficult to treat this equation in an exact

form. In this report, by adopting the Weissinger approxima-

tion, the surface integral-equation is converted into a span-

wise line equation. The applicability of the Weissinger

method to the three-dimensional propeller problem in the

steady condition has been well examined, but applicability

to the non-steady problem remains to be tested. In Appendix A

the two-dimensional sinusoidal gust problem is treated under

the Weissinger approximation and the result is compared with

Sears' exact value. The result is also applied stripwise to

R-94-
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the present problem and a comparison with the results of the

three-dimensional Weissinger approach is shown. This com-

parison (both approaches are obtained under the same Weissinger

approximation) will provide important knowledge on the three-

dimensional effect in the non-steady state.

FORMULATION OF PROBLEM

In this section the derivation of the integral

equation for the.angular harmonic component of the disturbance

flow is shown. Use is made of the acceleration potential

method. The necessary notations concerning the coordinate

system are shown in Fig. 1.

The pressure field P p(xro) due to a unit pressure

pole l(ý,Pp) is given by
=1 1 (1)

Pp =- (x_ý) + r 2 + p2 
- 2r p cos (e-q)

If the pole is pulsating in its strength with frequency w and

rotating in the negative direction of 0 with angular velocity 2,

1 eimt
Pp 3-T,(2)

P X•e(x-•)2 + r2 + p2 
- 2r pcos (eo0-t-0)

The linearized relation between the perturbation velocity

potential O(x,r,o,t) and the corresponding pressure field

P(x,r,o,t) in the main (x-direction) uniform flow U is given by

U.+ 7 = --P

x 6t (3)

where p is the density of the fluid. If it is assumed that

= 0 at x = -, the solution 0 for given P is

D= 4j P(T',r,,t + T'-X) dT' (4)_AU
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On substituting eq. 2 into eq. 4 and putting T' = T+ý, the

velocity potential Ip corresponding to Pp of eq. 2 becomes

eiCt x-e e _(d- (5)
ep = - 7 +r2+p2_2rpcos[O_ t_(x+)_ 'dT (5)

When the observation point (x,r,O) is rotating together with

the pressure pole, putting 0 - 2t'

i e it e iu(T-x+ý)
=-0 2+r2+p2 -2rpcos (a°- °) -U(r-x+ (6)

If the pressure pole is replaced by a dipole, the correspond-

ing velocity potential (d is

(D (d =(7)
d • P

where 6 is a differential operator with respect to (ý, P o )6x 0•

in the direction of the dipole axis. Velocity induced by this

dipole is

Wd (xdr.,o) p 6 d (8)

where- is an operator with respect to (x,ro 0 ) in the
6xt

designated direction of the velocity.

In the acceleration potential method, the lifting

surface is regarded as a mono-layer of pressure dipoles, the

axis of which is normal to the surface and the strength of

which is proportional to the pressure jump across the surface.

Therefore, it is easily seen that eq. 8 is the elementary com-

ponent of the lifting surface integral equation for the simple

harmonically time-dependent problem of a rotating system.

R-940
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The phenomena appearing at corresponding points on

all blades due to the qth harmonics of the disturbance flow

are expressed in the following simple form:

Cn C 0 e iq [t - Un] (9)

wheren = 2(n - I), n is the name of the blade n = 1, 2,nher

.. ,..N, and N is the total number of blades. Summing up the

effect of all blades upon a particular blade (n = 1), and

considering that the geometrical equation of the lifting sur-

face of the screw propeller is expressed by

x (or' _ 1 ao), where a (10)

leads to the integral equation for. the present problem which

can be written as

iq(Qt - 0o ,iq~t
V(r) e e f / S(P, eo) K(.r, 0', PAe 0 ) de 0 dp (11)

p e o0

Here S(p,eo) is the lift distribution on the blade, and

K(r, o, p,o 0 ) is the kernel, which is obtained in the following

form by using eqs. 6 to 10:

K( r?- 0 , 0 ) I e lim __0) = --- E
4TO n=l 

_

e- ._eiq [-5n_ na(__ x+_)] ]
f 0/T2+r +p5-2rpcos (o-o)+Un -a(T-+F-)]j+ (12)

The directions of the differentiations in- and - are

perpendicular to the lifting surface, that is, from eq. 10

R-940
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Sr (a
6x' ;lTa ýr2 6x r 2 60 0ax(13)

6 - a 6
S4+a2 P2  p2 6Oo_

The limiting process

Iurlim 6 = (x-0) -1(k-eo)-e--O
a

is introduced in order to avoid the difficulty due to the
singularity in the mathematical manipulations. Physically,

it means that the manipulations are performed taking the con-

trolling point on a surface slightly shifted from the lifting
surface and that finally the former surface is brought in-

finitesimally close to the latter.

SOLUTION BY THE WEISSINGER APPROXIMATION

p APPLICATION OF THE WEISSINGER METHOD
AND SOLVING PROCEDURE

In the Weissinger method, the surface distribution
of the lift is replaced by a line distribution along the

1/4-chord line, and the controlling points are taken along
the 3/4-chord line. This method gives an exact lift for the
two-dimensional stationary wing problem, and it is applicable

also to the stationary three-dimensional wing problem under
the assumption of not too low aspect ratio. In fact, in the
stationary propeller problem, it has been shown that this

method can describe the effect of the helical free vortex

fairly well.

However, in the nonstationary case, there is another

kind of free vortex which is parallel to the span (in the
propeller problem the radial free vortex), and it seems not

R-9)40
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to have been clarified how precisely the Weissinger model can

obtain-the effect of the latter kind of free vorte>. The

applicability of this method to the nonstationary problem is

tested in Appendix.A by treating the two-dimensional sinus- I

oidal gust problem. The result indicates that this method

can be used up to a reduced frequency of 1.3, which corre-

sponds to blade frequency harmonics (q = N) in a propeller of

area ratio 0.4.

This approximation is based upon the first and

second terms of Birnbaum's chordwise lift distribution, and

hence on the left-hand side of the integral equation the cor-

responding components should be picked up. In the two- -

dimensional stationary case, this can be done exactly by

applying Glauert's lift operator,

(1 - cos a)da where x = -b cos a, x is the chordwise
0

coordinate and b is the semi-chord length. The same operator

is tried for the two-dimensional but nonstationary case in

Appendix A, and the result indicates its satisfactory applica-

tion to the nonstationary case up to the reduced frequency

1.3. In the following- treatment, the same procedure will be

used for the nonstationary three-dimensional case under the

assumption of a not too low aspect ratio.

Thus, the application of the Weissinger method con-

verts eq. 11 (the surface integral equation) into the follow-

ing line integral equation:

" 1
W(r) = ) L(p)K(r,p)dp , (14)

0
where iqgcos a

W(r) = V (r) 0 (1 - cos a)da (15)
0

L(p) is spanwise line distribution of lift,

K(r,p) LK(roP,- (16)

0 0)10.- (9 ='4.0

R-96-
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and.

eb is semi-chord length.

f The integral equation (eq. i4) can be. treated in

the following way. By dividing the span. into intervals of

equal length 2t, and regarding the lift distribution on each

fraction as uniform, eq. 16 can be written in the form of a

set of simultaneous linear algebraic equations

I[WP] = [K pq],[L q] (17.)

I The element of the kernel matrix is given by

Kpq = K(rp . p)dp (18)
r q- p

The singularity of eq. 12 is involved in the element pp, but

that singularity is integrable in the p integration. Thus, the

kernel matrix elements are free from singular behavior, and

the spanwise lift distribution Lq for given Wp, and, in

addition, the inverse matrix of ]Kpq], can be obtained without

any difficulty. In the nonstationary problem, all the ele-

ments in eq. 17 are complex numbers. Hence, if the span is

divided into P parts, the kernel matrix is of the order

2P x 2P, but a conventional digital computer can easily give

the required results.

I SIMPLIFICATION OF THE KERNEL

By putting y = -a(T - x + 0), interchanging the

order of the integral sign and differential operation in

eq. 12 becomes possible. The term within the brackets of

eq. 12, designated now by H, becomes on substituting eq. 13,

R-94o
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00

H =e- iq 0 n• or a (
1+2r2 (a----)6( +-/a ýp 6 ' p 2 6 0

0 l+ar r0

+ 2.+ P2 1(dy + +~ a (19)

Further, if

(x- = X and 0 + (O- ) + y= (20)

00

H- e- " -iq(en+y) r (a i 1__ P (a 1 _)
0 ý L a a 2

r
2  x r' 69 •a 222

1 ddy

VX2+r2+P2-2rpcosOj (o - o) + Y (21)
1.

a=y- (x-o)

Changing the integral variable from y to 8
00

H=-iq[E - (
H en(o-o

I- -r (a i1 ) a ia6 1

1 d8

L +a•r bx r2 b0 l+a•p 2  b •b

X2_f+r 2 +p 2 -2rpcos@ X 1E _ + 6 (22)a a n

where, 6 = (o-e) - (x-

Here, under the assumption that the pitch of the propeller is

low--i.e., a is large--the following two approximations are

introduced:

R-940
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Ia
) - (a -- i N _,

l+a p 6x p2 6E 6x

2) the chanlge shown in Fig. 2 of the integral path in
eq. 22 from the original one expressed by light solid
lines to the heavy solid lines.

These two approximations give K, eq'. 12, in the following form:

1 -iqqbK ='47TI~a" e [Ki + K2]

Swhere,

N Z rn+(±o/ 2 ) 6X2 e-iqE d8
K=l lim- _ K 0X2+r2±p2-2rp cos , X=6

Z0 (O 2 dO'q
K2= lim -

2  eXrp2 d8
6-0 m=l L p 22 cos GX=m

(24.)

o N

and (0o0 -) = 0 b in the Weissinger approximation.

The approximations 1) and 2) are rather rough ones

if they are adopted separately, but their combined use is
justified by a clear geometrical meaning as well as good

numerical results. This point is discussed in Appendix B.

It is also worthy of notice that K1 depends upon eb9

the semi-chord length, but is independent of a, the inverse
of pitch. On the other hand, K. depends upon the pitch but

is independent of the chord length. This fact is a great con-

venience for the numerical calculations.

R-94o
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EVALUATION OF THE KERNEL

K • When p / r, the limiting process 6-+0 can be taken

before the integration, then

N n +(5e/2) -iqE-
KI = L d8 (25)

n=l (4r 2 +p 2 -2rp cos ()
en- eb T

Further,

6 n +0r2  e2 i Bd

6 n*b r+p2-2rp cos E ) d

_lql 2 -l/2 (7T+jn- e /2) ei2q* dP

= (_) q+l 2 sd (26) T
(r+P) s ,- 1/2 ( 7r+-Gn_ 0 b) •-ai2 (6

where,

1 (7r+e) and k r (27)(r+p) 2

As is shown in Appendix C, the integral

q u e 2 3 d1 (28)1q= • k 2sina 2p

can be evaluated by the following recurrence formula:
4n (- (2n+l

n+l = • k2 n "2n-1 n-1

2 2 ei 2 nj .u

2n-l k2 Fl-k 2 siný2

R-940
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and

1 k 2 L7 - - l-k2sin2]

I I, = (- 2 ) 1 +2 F(k,VI) +i 2 1 '(29)

k 2 0 k 2 * k2 1-~k 2sin 2? *%

where F(k, ') and E(k,4') are elliptic integrals of the first

Sand second kind, respectively. In the case of p / q, the

integration with respect to p in eq. 18 can be evaluated by

conventional numerical methods or by taking some conventional

mean value.

In the narrow band expressed by I p - rpj<<rp, which

exists in the element p = q, a special treatment is necessary.

As is shown in Fig. 3, this area is divided into the following

three regions:

I) rp - o< p<rp + Eo (O<e</31 P,) and--Y<O<y (0<Yl<<i)

which include the singular point p = r G = 0, (double
hatched region) P

2) r - e <p<r + e but excluding - 'Y<<-, (dotted

region)

3) rp - A< p <rp - and rp + e 0 <p<r + P2, (single

hatched region)

Designating the contribution of these three regions of Ki as

Jil J 2 and J. respectively, eq. 24 gives

Ji = lim p + o _ __2 e d8 dp (30)
6 =X-•O _ jX 2 +r 2 +p 2-2rpcosOrP - G°o -

R-940
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+I +
J0 rp 0ib 1o+/Y + b-

_a2 e- iq (31)

6x 2 ýX 2 +r 2 +p 2 -2rpcosO

JS = lim0 + r

X=6-0]
-rp n P rp + Eo

n + 1/20- 0 2 -iqO
6. b e dO dp (32)n"=1 x X++p-2rpc~osE)

n b

The most convenient form for evaluating the total contribution

J of these three parts is the limit value expression:

J = lim (j j + j + ) (33)
0

As is seen in Appendix D:

limr j=lim ( 14
:-40 -+0 r E(3>)
o o p o

The integrand of J 2 is finite through the whole integration

range, and hence

lim->0 J2 = 0 (35)
0

In Appendix E, JS is given in the following form:

R-9110
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I
urn j = ur F 2~ + -2-- F- ("I'.) (B -1/2)

e 0+0 £E40 Lr pJ E r:) L r pc in

+ k? Aq - B + 1I + (-2-- (36)
0I (c q 1 -

where and A2 should be taken to satisfy the relation

k? =_ 2 37)
2rp-P 2r p+P2

where

(-/2( T-jb -?N 1/(,+ n +jLi 2)

01-/
2 (qr±j1 2) n=2 _127rjn_ b

T-sin 2 *

Aq, B and I are given in Appendix D.
ýq q q

An important cancellation occurs between lim J. and the first

term of lirn J3 . E:°--40

K2  No singularity is involved in K2 . Taking the limit

value before integration and replacing the summation with in-

te-gration

2 O 27T [ V2 e-i q d1 d

K m+/2 9=0 •X r -2rcs91 X = m(l/a)o

S 2 • -i 1 l(38)
0 ~ ~ 0  ~/a2r2±p2-~2rpcosO

=0 i --OS XU 0ý- 0e 0

R-9410
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Using the Lipschitz integral 6 and Neumann's addition theorem7

T eiqEd
G GX2+r2±p2-2rpcos d

(39)

2T -iq8 e-lXlk .-
Se E m J m J(kr)J m(kp) cos mG dkd8,

8 =0 k=O m=O

where

Sfor m = 0
m 2 for m 7 0

Further,

G = 27T' J (kr)J (kp)e-IXIk dk

to q qk=o

=2r q(ref. 8)

where

r 2 + p2 + x2

2rp

The function Qq-1/2 is a spherical function. Numerical tables

of Qq-1/2 necessary for the following treatment are given in

ref. 9.

G 2 Z ) zGa = •Qq 1 / 2 (Z)---

___ F(112)
2xq-i2 LZ Qq 1 / 2 (Z)- Qq_ 3 / 2 (Z)]

R-940
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j The behavior of Qn-l/2 for large Z is

fn-l/2 1/2 . r 2 (n+s+l/2) •z)n+s+1/2 (43)"S = .1 (n+s) i Z+I'

Hence in the present problem with q>O,

[ G = o (44)

Thus, finally

K2-( )l q-1/21 [Z0 Qq-1/2(z° -) Qq-3/2(z° j
r r2+p2+(2 1 o 2

where Z= 2 a 0  (45)
0 2rp

R-940
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NUMERICAL RESULTS AND DISCUSSION

Calculations have been performed to assess the

theoretical approach evolved here and to determine the three-

dimensional effects in the stationary and nonstationary flow

cases as well as the effects of such important parameters as

blade-area ratio and pitch angle. The calculations have been

restricted to a four-blade propeller with sector type blade

form and blade-area ratios A B = 0.22, 0.44 and o.66 and to a

constant amplitude gust velocity from root to tip expressed

by W = W 0 e- iqo

The results are exhibited in Figs. 4, 5 and 6 and

summarized in Table I for frequencies q = 0 to 4 and for

representative values of inverse pitch angle, a , which

bracket the range of pitch-diameter ratio of practical in-

terest; i.e., a = 27T, P/D = 1/2 and a = 7r, P/D = 1. In the

same figures the results of calculations for Weissinger's

two-dimensional model by a stripwise method are presented for

comparison.

As a measure of the three-dimensional effect, R,/2

is introduced to indicate the ratio of the three-dimensional

results for total lift to the corresponding two-dimensional

value,

R load by three-dimensional calculation,912 = load by stripwise two-dimensional approach

Since the three-dimensional and two-dimensional results are

obtained through the same Weissinger approximation, R,/2 can

be said to be a well-defined measure of the three-dimensional

effect.

It is seen from Figs. 4, 5 and 6 that the ratio

R,/2 decreases for decreasing order of harmonic q. This in-

dicates that the over-all correction for three-dimensional

R-94o
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effects is much more pronounced in the stationary case than

in unsteady flow, a fact which can be explained at least

qualitatively, in the following manner. The propeller, as

any other lifting surface of finite aspect ratio, is accom-

panied by two free vortex systems. As a result of the span-

wise gradient of the circulation, a free vortex system is

developed along the helicoidal surface. On the other hand,

the timewise change of circulation leads to a radial free

vortex system. The first system is characteristic only of

three-dimensional flow conditions whereas the second is pre-

sent as well in the two-dimensional model and to the same ex-

tent. In the marine propeller case due to high load and

rather low pitch, the effect of the first vortex system is

heavily accumulated in stationary flow conditions, thus there

is a large discrepancy between two and three-dimensional re-

sults. In nonstationary flow conditions the helical free

vortex changes sign q times per pitch and hence the accumu-

lated effect is mitigated considerably. The higher the fre-

quency the smaller the effect of the helical free vortices,

therefore the closer the three-dimensional results to the

corresponding two-dimensional case.

The results also indicate that for higher blade-area

ratio, i.e., for wider blade where the interaction between

blades becomes greater, the three-dimensional effect is more

pronounced. In fact, Fig. 7 shows that for larger blade-area

ratio, coincidence of the results by both approaches, three-

dimensional and two-dimensional, will be delayed to higher re-

duced frequencies. As the area ratio decreases, coincidence

will occur at lower reduced frequencies; in other words,

three-dimensional effects become less important. The effect

of inverse pitch angle, a , is not as important (in the range

7r < a < 27r) as is the blade-area ratio. However, it can be

said that the smaller a the closer the three-dimensional load

to the two-dimensional value.

R-94o
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For an airscrew propeller with small blade-area

ratio (small solidity) and high pitch angle (small a) the

three-dimensional effects should be less important than for

the marine propeller with larger area ratio and smaller pitch

angle. This conclusion is borne out also by the comparison

on the same figures of the phase angles between downwash

velocity and loading obtained by both approaches. It is seen

that as the order of harmonics increases, the three-dimension-

al value for the phase angle tends towards the corresponding

value for the two-dimensional case. For smaller blade-area

ratio, the deviation is minimized at lower reduced frequencies.

On the basis of the present investigation revision

can now be made of the method used in ref. 3 to obtain vibra-

tory thrust and torque and the large discrepancy shown

there between theoretical and experimental results can be ex-

plained. The method of ref. 3 was based on the work of

Ritger and Breslin2 who used two-dimensional unsteady airfoil

theory in a stripwise fashion in conjunction with Burrill's

semi-empirical correction factors." Burrill t s corrections,

which include among others those for three-dimensional effects,

are determined for stationary flow (steady-state) only. Use

of these corrections in refs. 2 and 3 for both steady and un-

steady flow is now proved invalid. The fact that the calcu-

lated load amplitude in unsteady flow was found to be 1/3 of

the experimental value can now be explained by the results of

the present theory which show that the correction factor for

three-dimensional effects is quite different for stationary

(q = 0) and nonstationary cases. From the figures and

Table I, it is seen that

R3 / 2 for q = 0 1
R,/2 for q = 4 -3

which indicates that the values of the unsteady loads ob-

tained by the method of ref. 3 were overcorrected. If the

R-940
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right correction factor were used in the unsteady two-dimen-

sional approach the theoretical result would have been closer

to experiment.

CONCLUSIONS

The unsteady lifting surface integral equation is

derived for the marine propeller case and its solution ob-

tained by using the Weissinger approximation. The kernel

function is expressed in closed form after some mathematical

simplification. The applicability of the Weissinger method

for the nonstationary flow case is studied and the results

indicate the validity of the method up to reduced frequency

1.3 which corresponds to the blade frequency of a four-bladed

propeller of area ratio about 0.4 and of a three-bladed pro-

peller of area ratio of 0.6.

The numerical examples restricted to a four-blade

propeller with sector type of blade form of area ratio 0.22,

0.44 and 0.66 and to a constant amplitude gust show that the

difference between the three-dimensional approach and the

two-dimensional stripwise approach diminishes as the order of

harmonic increases, as the area ratio of the blade decreases

and with increasing pitch-diameter ratio.
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I

APPENDIX A.
APPLICABILITY OF THE WEISSINGER METHODTO THE NONSTATIONARY PROBLEM

In order to clarify the applicability of the Weiss-

inger method to nonstationary problems, Sears' sinusoidal

gust problem is treated by this method in this section.

Consider the system shown in Fig. A-l. The induced

velocity due to a pulsating dipole located at (x',y',z') is

obtained in the way described in "Formulation of Problem,"

(eqs. 1 to 8).

icut?
~iwt i x- 4 i T- x+x)

W(x.y~z e e 1 dT

t)=Tgu -z -00 4T +(Yy-y)+(ZZ,)

It must be noted here that the dipole axis is taken in the

negative z'-direction so that the positive direction of the

lift will coincide with positive z'. If the dipoles are dis-

tributed uniformly from y' = to y' = + on the 1/4-chord

Jline, the induced velocity upon the 3/4-chord line is

i+i

Loet -2 ik(T-l) 1
W(t) = lim __ 3 e dTdY (A-2)

z-*O 6__ T=oT
2+y 2+Z 2Z0Y=-00 T=-00

where L is the lift per span and k = is the reduced
0

frequency. The integral part of eq. A-2 is written as

G = lim | Z- e + dTdY

Z-+O JTýy2Z
1

= lim 6Zi eikT 2Z (A-3)
z* J T= 0 dT 

(Z2

R-940
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G is divided into three parts?.

G = 2(G +G 2+G

G,= lim - LZ eikT 2 dT
1 Z-+O T2 +Z 2

G = lim T • eikT Z dT

G = lira +1 ~eikT Z dT (A-4)
2 ZO 2+Z2

where it is assumed that Id << 1.

Since the integration range of G includes no

singularity, lim. can be taken before integration, and G
Z•0-o

is obtained in the following form:

-=CeikT 1-d
Gi= ý- --i • dT

= co k -7T + kSi(kE) -ii. sin (kE) + ikCi(kE)(A-5)
E:2 E:

where Ci and Si are the cosine and sine integrals which are

given by

Ci(x) = f cio - dtx t

ax sn t dt , respectively.

In a similar way,

I eikT
G = TedT

R-940
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II

=- cos k + cos ke - kSi(k) + kSi(kE)1

- sin k + i sin ke - ikCi(kE) + ikCi(k) .(A-6)

In the integral region of G , there is a singular2
point. Therefore the limit Z-•0 must be taken last. The

exponential is, in series form,

- elikS-i k1 . .
e -- 1 + ikT - mjkT)2 (A-7)

The contribution of the first term of G is

+E: 

2

G =lim Z d-SZ-0O T 2+z2

= - 21 (A-8)

That of the second term (and, in general, the terms of odd
powers of T) is zero; that is,

c+Ei

G =lim - ikT Z dT =0 (A-9)
22 Z-0 T2+Z2

The contribution of the third term is
+6

G = lim 7- - kT)2 Z dT (A-10)
Z-+OT Z0

-6~~~k 2FZ0 . 2Z

Summing up these results and taking the limit as E;-0 leads to

G = lim 2 (G +G2+G

= 2 [-eik + ik(Ci(k) + iSi(k) + i -)] (A-11)

R-940
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which upon substitution into eq. A-2 leads to:

W(t) : eimt -L° [i - ike-i (Ci(k) + iSi(k) + i -)] (A-12)

If the upwash velocity at 3/4-chord point V3/4ei(t is given,

the complex amplitude of the lift L is obtained by the follow-0
ing equation:

L

V = .L .[1 - ikeik (Ci(k) + iSi(k) + i ) A-13)
ý/4 27TpU2

The upwash velocity distribution is given as V(x)ei°t where

V(x) may be expanded in Birnbaum's form

0o

V(x) (v-E vncos na A-it)
n=l

and V3 /4 is obtained by setting x = 1/2.

However, when the series V(x) is composed of more than

two terms, the straightforward application V3 /4 = V(1/2) leads

to very poor results for the Weissinger method. This diffi-

culty can be overcome by an averaging process: V3 /4 is taken

as

V . V(x) (1 - cos a) d a (A-15)v3/4 7T

0

where x = - cos a and the integral operator (l - cos a)

da is nothing but Glauert's lift operator. 0

If eq. A-15 is used in the stationary state case, the

Weissinger approximation gives exactly the same results as

thin airfoil theory. On expanding V(x) in Birnbaum's form

and applying the Glauert integral operator, it is easily

found that the result obtained is the velocity at 3/4-chord

point due to the first and the second term components of the

R-940
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3 upwash velocity V(x) in the Birnbaum form.

It must be noted once more that the application of the

3 operator gives exact results only in the stationary case.

However, in the following, the application of this operator

3to nonstationary problems is tried..

In Searsý sinusoidal gust problem, the upwash velocity

3 V(xt) is given in the form of

im( t-x)

3V(x,t) = V e i (A-16)

3and with x = - cos a

V(x,t) = V eimteik cos a (A-17)

3.1
where k = •-is reduced frequency. If the integral operatorU
is applied

3V 3 / 4 =V° 0 (I - cosa ) e cosa da

0

V 1 (i - cos a) (Jo(k) + 2 j n (k)cos na)da

0 n=l

V [J (k) - iJ (k)] A-18)

On substituting 
in eq. A-13: 

ik

V [J (k) - iJ (k)] i++
0 o 2 7rpU

A-19)

The value of L o27r/UV from eq. A-19 is shown in Fig.
A-2. In the figure, the exact Sears' value is also plotted,

The agreement between them is fairly satisfactory in the re-

duced frequency region from 0 to 1.3. The value of reduced

frequency 1.3 corresponds to the blade harmonic (q=N) in a

propeller of area ratio about 0.4.

R-90o
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APPENDIX B.
GEOMETRICAL MEANING OF THE

SIMPLIFICATION IN THE KERNEL

The simplified expression of the kernel, eqs. 24,

is obtained from the original kernel equation, eq. 22, by

using two approximations, one in the integral path and the

other in the direction of differentiation. The validity of

these simplifications becomes clear when the geometrical

significance of eq. 22 is compared with that of eqs. 24.

Equation 22 indicates the following manipulation:

the inverse of the Descartes distance,

1 1

R[(O,r,O),(X,p,0)] ýX2+r2+p2-2rp cos 0

which has its ends on a group of helicoidal surfaces

(n = 1, 2, ...... ,N), is differentiated at both ends in the

directions perpendicular to the surfaces and then integrated

moving the end (X,p,G) along the helical trajectory on the

helicoidal surface X = 1 0 - 1
a a n

On the other hand, the simplified eq. 24 implies a

similar procedure, but, this time, the helicoidal surfaces

are replaced by segments of planes. Since the greatest con-

tribution of the integral in eq. 22 and eqs. 24 arises in the

rather narrow region, where the helicoidal surface in eq. 22

can be regarded as aplane, eqs. 24 can be a very good ap-

proximation for eq. 22, because in this region the relative

direction of the differentiation with respect to the vector

(O,r,O) (X,p,b) is the same in both expressions. Numerical

results have been obtained for K2 when r = ;75 and p = .85eo 3eo
and X is taken from 1 to 1110 derived from both expressions

and from eq. 38 where the summation is replaced by integra-

tion. They are compared in the following:

R-9 0
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K2 for q = 0, r = .75, p = .85
a=27T a=7r

Eq. 22 from X a 23a - 25.1 - 9.6SEq.22 fom = •2at 2a

Eqs. 24, m = 1 - 24.7 - 9.0

Eq. 38 from X - to 0 - 23.8 - lo.8S0 t eo
2a 2a

The agreement among them is satisfactory for practical pur-

poses.

SThe values of K1 from eq. 22 and from eq. 25 de-
rived from 24 are compared below for the same values of
r = .75 and p = .85. (The half-angular chord eb=0O - e 0=00

for the calculations.)

J q K,(eq. 25) K1 (eq. 22)

a = 27r a = 3r a = 7

0 228.0 218 214 205

11 224.3 - 5.7i 216 - 6i

4 200.8 - 19.oi 194 - 18i

R-940
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APPENDIX C.
EVALUATION OF INTEGRAL

fu ei 2 q*f d

q = (ýl-k2sin2*).

Watkins derived the recurrence formula for the

special integral limits ?u = H and = 0. A somewhat

similar method gives the formula for general integral limits.

In the first place, the following notations are in-

troduced:

1e 2p e12n*
I, n 2(lk2 sin2)/ d

Ic + i Is (C-1)
,n 'vn

""/u cos2n@ d• +i"u sin2.n

(l-k2 sin2?i)v/2 k( lk 2 sin2 7i)pv/2

The expression 4
cos 2(n+l)4+cos 2(n-l)*=cos 2n*(2-kL)+ 4 cos 2nj(l-k 2 sin2 ?p),

k 2  kP (C-2)

gives the relation

±c 2(1 ) 1c 4 cI I+ 1' 2(1-2)I + -L Ic (C-3)
s,n+l ..s, n-i k2  3,n k2  ,n1(0-

Also, if the relation

T sinicos* d*- 1 1

(l-k 2 sin 2 ?p) 3/2 k2  (l-k2sin2¢) 2 (C-4)

is used, the following expression is obtained:

R-94o
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I [1 sin2nV/ -P 2n Ic] c5
s,n+l S,n-i kL2 (l-k2 sin21/,) 2 k2  l,n (C-5)

cI
Eliminating I from eqs. C-3 and C-5,

(2n-l) Ic + (2n+l) Ic 4n( 1 1s, n+l 3,n-1 k 2 3, n

S4 
sin2n@p ?Iu (C-6)

k2 (k2 sin 2.)1/2

In a similar way,

(2n-l) Is + (2n+l) 4n (1 (C-7)s,n+l + ~- (2kl 2s n_ S,n

4 cos2n* *U
k2 (1-k 2sin 2*)1/2

Thus, considering
Ie I l

q q (c-8)

and using the relation of eq. C-l, the recurrence formula for

I is written as
q

4q (1 2) + 2q+l-
q+1 2q7l k8 q 2q-1 q-1

1 4 ei2qlp *u (C-9)
2q-1 k1 (l1k2sin2¢)l/2

R-940
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In order to use this formula, the evaluations of I 0 and II

are necessary. Some elementary calculations give

T 0 k,4) k2 (1/2) sin2*
1-kL (lk sin27) 1/2]

I = 0

3,0
80

c = (1 -1) c . 2u1,1 (l 0 + -- F(k,/) (uO)k2 k2

and

2 1 1 u
3 l k 2 (1-k 2sinap) 1/

where F(k,?P) and E(kj?) are the first and the second kind of

incomplete elliptic integral. Combining the cosine and the

sine terms,

0 i [E(k4) k 2 (1/2) sin2* 7ju (C-11)

II= e = (1 -12) I+i ~ Fu
k2 .k2

_2 1 + k u

k 2 (1-k 2 sin2 *) 1/2 (C-12)

R-94-0
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APPENDIX D.
] INTEGRATION J

]V The contribution of the small area including the

singular point 8 = e, p = rp is

Ir p+E:

Jl lim 62 22 2 d 8 dp

Sx-•X x 2  x+r.p-rp (os8P • =rp- E:O = -Y (D-1)

As is stated in "Evaluation of The Kernel (K 1 )" on p. 10,

S the case of j-yj« 1, c r is considered. Therefore
the cas~e of7<i,0

J lim -2 1 de dEd (D-2)S• , %X-2+e2 2 +rP 2

J and taking the lim finally

x-)O

4 r ((D-3)
1 rP (r P ) 2  (E 0)2

Therefore,

rlim l =- 4 (D-4)E- 0 rp E;o

R-940
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APPENDIX E..
INTEGRATION J3

The integration domain does not include the singular

point, therefore J can be evaluated by the recurrence re-

lation obtained in Appendix C. However, the limiting process

E0--*O precludes using a numerical method for the p integra-

tion. In this section this difficulty is overcome by evalua-

ting the integral in an approximate but analytical form made

possible because P1, f2 << r
p

The limiting process is taken first, then in ellip-

tic integral form,
-. (T- $0

p 0 0

J2=(-1)q+42 + 1 N sin2' dpdp

(rS+5]1 3 n 2b)
rp rpp E s

where, k 2 _ 4rPp (E-1)

Further, J. is divided into two parts,

r e Eo rP P-_Ti2qa ~ dJ=(-)q+l 2 (rp+) (l i2 eqn

2[ +s::(r +P)3 -k ss0 EP
L Arp p

(Eý2)

- 2+ (p7p r -,r0E: r P+92-
r-1)q+l 2r j r+ o) o -(1 -)

(eq. E-2 con't, on next page)

R-940
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+ +n.e 2qV (E-3)N -• • I i2q•I

- 7r•(+e-leb)J k2sin2 (E

with k2= 4rp and
(rp+p)2

kI =N1 - k2

J., can be written as

J _ =2 2 + pAV

+ _,ql 2 2r -3

(2rp) 2  (1+k') Itq dk'
pq

2r p- 0

S(E-4)

fo+ h ell)iq+ l 2 i 2r p+ ( 1-gra V q dkT

] (2 2r +C

-E -2

where I q = l~k2 sin 2 1 (-5

" ~0

The recurrence relations obtained in Appendix C can be adapted

Sfor the elliptic integral l'.Then

SR- 94-0
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14 +k' 12 ,+ 2q+l I

11q+l 2q- [-k (yk 2) ' 2q-1- 'q-1] (E-6)

0 -22T E (ý1k2(E-7)

[r+k12 IT + 4 (- K(-l-k12)] (E-8)

where K(k) and E(k) are complete elliptic integrals of the

first and second kind. These formulae give

= -L2 E]

IV = [ 2 E 4 --f
= k---• l•? K]

If [(4Q23) k- E- Q L.K (E-9)

32 29 2 E Q *~2 5.) 4P3  (32~s - k2 E 3 -ký
k8 k

it J(1 28 41442 21) 
2 E - (128 93 84= k2a _-ý 17

1+k '2
wnere, Q = l1k,2

In the following treatment, since I3, •2 < < r and
A2 p

hence kV << 1, the terms smaller than the zero power of k'

in the integrand of eq. E-4 are neglected. The elliptic in-

tegral E and K can be expanded in powers of k?2 as

4T 2 + 16 (tn - 130E = 1 + 1 (tn k-- k" k'+% k

2?, 7f4 A1~ - -1) k 2 +2 -)

+ 4 2+ (n 7f
K = tn y r + T( tn k- r 1 ) k% ý- -k 6 ) k ' + ( E -1 0 )

(E-lO)

Hence, from eqs. E-9, a sufficient form of I' for the above-q
mentioned approximation is

R-94o
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I I (1l)q+1 2{[1+(a-btnkI)k 2] A~- q -ctk

where (-1

2 2

c Yn4fl

I and
A qB = 2q 2

Cl 00 0

11 2 2
2 16 8

13 1341/3 1

I ~Eq. E-41 becomes

p 0

(r_ +2 k(n? 1~( + 2r'( b+(i4- c+

2r2r -O

(E-12 Con't)

R-94o
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P
2

1 + +-'(n' 1 Bb)+Xc'(A Pa-B )-nk]
k1 t(r 2 k q q

€0
2r E

p 0

If P and P2 are chosen to satisfy the relation

S(k / k ) (E-13)
2r_ 7 2rp+P 2

lim J.r is given in the following form:
E0-0

lim = lim (iJ3  + J+

2 + k', ( inkT,-l) (B-_b)

, 1k (Aa - Bc)j..
q q

+ lrn I (E-14)
C5- O r~ 0

As is seen in eq. E-3, even the point in the inte-

gration domain of J.2 which is closest to the singular point

is at a distance from it equal to r ,0 where Gb is the
angular semi-chord.

If Pi and P2 are very small compared to rp b, k
can be assumed unity throughout the whole integration domain

of Js2 " Thus,

R-94.0
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Jrn2 lim (-l)q+l 212k' 1  r0
E0O•0 p rp]

i(m 7bT- -1~(7r ++ 0)1

Iq -2_ i ( + E ½•• -b
M 0 + 11n

2 2r2 (+lS 7 + b) i
where 

(E-15)

III ei2q* d4' (E-16)
-- I'q ]•lsina 2*

The recurrence relation obtained in Appendix C holds also for

_ iq, but in this case it becomes

T v _ t2- 'l T ' - i ( + ) 4 " e 1 2 q *

q+l 2q-1 q 2q-1 q-I 2q-1 cos ?

i•" + [sino + I 4,n tan (7 o + +)I]

r,, -(-l) Io + 2 F (k=l, 7P) + i2 ()(E-17)

2cosin 2 n tan ( i 2 *o.-1

where the double sign should be taken in the following sense:
+ for the region cos 4'>O

- for the region cos i< 0

R-940
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FIGURE A-I. COORDINATE SYSTEM AND NOTATIONS FOR TWO-DIMEN-
SIONAL WEISSINGER MODEL
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FIGURE A-2. APPLICATION OF WEISSINGER METHOD TO SEAR'S GUST PROBLEM
FOR NON-STATIONARY CASE
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